学习Python必须要知道的4个内置函数

学习Python必须要知道的4个内置函数

1、map

map是python内置的高阶函数,它接收一个函数和一个列表,函数依次作用在列表的每个元素上,返回一个可迭代map对象。

class map(object):
    """
    map(func, *iterables) --> map object
    
    Make an iterator that computes the function using arguments from
    each of the iterables.  Stops when the shortest iterable is exhausted.
    """
    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __init__(self, func, *iterables): # real signature unknown; restored from __doc__
        pass

    def __iter__(self, *args, **kwargs): # real signature unknown
        """ Implement iter(self). """
        pass

    @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    def __next__(self, *args, **kwargs): # real signature unknown
        """ Implement next(self). """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

用法举例 :  将列表li中的数值都加1,  li = [1,2,3,4,5]

li = [1,2,3,4,5]

def add1(x):
    return x+1

res = map(add1, li)
print(res)
for i in res:
    print(i)

结果:
<map object at 0x00000042B4E6D4E0>
2
3
4
5
6

2、lambda表达式

是一个表达式,可以创建匿名函数,冒号前是参数,冒号后只能有一个表达式(传入参数,根据参数表达出一个值)

nl = lambda x,y:x*y  # 给出x,y参数,计算出x和y的相乘
print(nl(3,5))
print("-----")
#和map的结合
li = [1,2,3,4,5]
for i in map(lambda x:x*2, li):
    print(i)


结果:
15
-----
2
4
6
8
10

3、Pool

1、多进程,是multiprocessing的核心,它与threading很相似,但对多核CPU的利用率会比threading好的多

2、可以允许放在Python程序内部编写的函数中,该Process对象与Thread对象的用法相同,拥有is_alive()join([timeout])run()start()terminate()等方法

3、multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程

传统的执行多个函数的例子

import time

def do_proc(n):  # 返回平方值
    time.sleep(1)
    return n*n

if __name__ == "__main__":
    start = time.time()
    for p in range(8):
        print(do_proc(p))  # 循环执行8个函数
    print("execute time is " ,time.time()-start)

结果:
0
1
4
9
16
25
36
49
execute time is  8.002938985824585

使用多进程执行函数

"""
遇到问题没人解答?小编创建了一个Python学习交流群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
"""
import time
from multiprocessing import Pool

def do_proc(n):  # 返回平方值
    time.sleep(n)
    print(n)
    return n*n

if __name__ == "__main__":
    pool = Pool(3)  # 池中最多只能放三个任务
    start = time.time()
    p1 = pool.map(do_proc, range(8))  # 跟python的map用法相似(map连续生成8个任务的同时依次传给pool,pool依次调起池中的任务,执行完的任务从池中剔除)
    pool.close()  # 关闭进程池
    pool.join()  # 等待所有进程(8个进程)的结束
    print(p1)
    print("execute time is ", time.time() - start)

结果:
0
1
2
3
4
5
6
7
[0, 1, 4, 9, 16, 25, 36, 49]
execute time is  3.3244528770446777

查看任务管理器:
在这里插入图片描述
4、random

import random

print(random.random())  # 生成一个0-1随机小数
print(random.uniform(10,20))  # 指定范围随机选择一个小数
print(random.randint(10,20))  # 指定范围内随机选择一个整数
print(random.randrange(0,90,2))  # 指定范围内选择一个随机偶数
print(random.choice("abcdefg"))  # 指定字符串中随机选择一个字符
print(random.sample("abcdefgh"),2)  # 指定字符串内随机选择2个字符
print(random.choice(["app","pear","ora"]))  # 指定列表内随机选择一个值
itmes = [1,2,3,4,5,6,7,8]  # 将列表表洗牌
random.shuffle(itmes)
print(itmes)
hmoban主题是根据ripro二开的主题,极致后台体验,无插件,集成会员系统
自学咖网 » 学习Python必须要知道的4个内置函数