Python小白的数学建模课-09 微分方程模型

Python小白的数学建模课-09 微分方程模型

小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文。

本文介绍微分方程模型的建模与求解,通过常微分方程、常微分方程组、高阶常微分方程 3个案例手把手教你搞定微分方程。

通过二阶 RLC 电路问题,学习微分方程模型的建模、求解和讨论。

欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新


1. 微分方程

1.1 基本概念

微分方程是描述系统的状态随时间和空间演化的数学工具。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。微分方程在化学、工程学、经济学和人口统计等领域也有广泛应用。

具体来说,微分方程是指含有未知函数及其导数的关系式。

  • 微分方程按自变量个数分为:只有一个自变量的常微分方程(Ordinary Differential Equations)和包含两个或两个以上独立变量的偏微分方程(Partial Differential Equations)。
  • 微分方程按阶数分为:一阶、二阶、高阶,微分方程的阶数取决于方程中最高次导数的阶数。
  • 微分方程还可以分为:(非)齐次,常(变)系数,(非)线性,初值问题/边界问题…

以上内容看看就算了,看多了就吓跑了。

1.2 微分方程的数学建模

微分方程的数学建模其实并不复杂,基本过程就是分析题目属于哪一类问题、可以选择什么微分方程模型,然后如何使用现有的微分方程模型建模。

在数学、力学、物理、化学等各个学科领域的课程中,针对该学科的各种问题都会建立适当的数学模型。在中学课程中,各学科的数学模型主要是线性或非线性方程,而在大学物理和各专业的课程中,越来越多地出现用微分方程描述的数学模型。

数学建模中的微分方程问题,通常还是这些专业课程中相对简单的模型,专业课程的教材在介绍一个模型时,往往都做了非常详细的讲解。只要搞清楚问题的类型、选择好数学模型,建模和求解并不是很难,而且在撰写论文时对问题背景、使用范围、假设条件、求解过程有大量现成的内容可以复制参考。

小白之所以害怕,一是看到微分方程就心里发怵,二是缺乏专业背景,不知道从哪里查资料、不能判断问题的类型、不知道选择什么模型、不善于从题目内容得出模型参数,也不知道如何编程求解。所以,老师说,一看这就是××问题,显然就可以用××模型。小白说,我们还是换 B题吧。

本系列将会从简单的微分方程模型入手,重点介绍微分方程数值解法的编程实现,并通过分析问题、建立模型的案例帮助小白树立信心和动力。

希望你在学习本系列之后,会发现微分方程模型是数学建模中最容易的题型:模型找教材,建模找例题,求解有例程,讨论有套路,论文够档次。

1.3 微分方程的数值解法

在学习专业课程时,经常会推导和求解微分方程的解析解,小白对微分方程模型的恐惧就是从高等数学“微分方程”开始,经过专业课的不断强化而形成的。实际上,只有很少的微分方程可以解析求解,大多数的微分方程只能采用数值方法进行求解。

微分方程的数值求解是先把时间和空间离散化,然后将微分化为差分,建立递推关系,然后反复进行迭代计算,得到任意时间和空间的值。

如果你还是觉得头晕目眩,我们可以说的更简单一些。建模就是把专业课教材上的公式抄下来,求解就是把公式的参数输入到 Python 函数中。

我们先说求解。求解常微分方程的基本方法,有欧拉法、龙格库塔法等,可以详见各种教材,撰写数模竞赛论文时还是可以抄几段的。本文沿用“编程方案”的概念,不涉及这些算法的具体内容,只探讨如何使用 Python 的工具包、库函数,零基础求解微分方程模型。

我们的选择是 Python 常用工具包三剑客:Scipy、Numpy 和 Matplotlib:

  • Scipy 是 Python 算法库和数学工具包,包括最优化、线性代数、积分、插值、特殊函数、傅里叶变换、信号和图像处理、常微分方程求解等模块。有人介绍 Scipy 就是 Python 语言的 Matlab,所以大部分数学建模问题都可以用它搞定。
  • Numpy 提供了高维数组的实现与计算的功能,如线性代数运算、傅里叶变换及随机数生成,另外还提供了与 C/C++ 等语言的集成工具。
  • Matplotlib 是可视化工具包,可以方便地绘制各种数据可视化图表,如折线图、散点图、直方图、条形图、箱形图、饼图、三维图,等等。

顺便说一句,还有一个 Python 符号运算工具包 SymPy,以解析方式求解积分、微分方程,也就是说给出的结果是微分方程的解析解表达式。很牛,但只能求解有解析解的微分方程,所以,你知道就可以了。


2. SciPy 求解常微分方程(组)

2.1 一阶常微分方程(组)模型

给定初始条件的一阶常微分方程(组)的标准形式是:

[egin{cases}
egin{aligned}
&frac{dy}{dt} = f(y,t)\
&y(t_0) = y_0
end{aligned}
end{cases}
]

hmoban主题是根据ripro二开的主题,极致后台体验,无插件,集成会员系统
自学咖网 » Python小白的数学建模课-09 微分方程模型