MATLAB数值实验:函数逼近法求方程的数值解
MATLAB数值实验:函数逼近法求方程的数值解
作者:凯鲁嘎吉 – 云海天 http://www.cnblogs.com/kailugaji/
这篇博客主要通过给定的数学迭代公式,利用MATLAB来迭代求解多项分数阶微分方程的数值解,主要用到的是函数逼近法,一种是非线性化数值解法,一种为线性化数值解法,并绘制解析解与数值解的函数图像,计算两者的误差。
1. 问题描述
2. MATLAB程序
demo_1.m
clear clc format long % 数据形式为长精度 % Author: 凯鲁嘎吉 - 云海天 http://www.cnblogs.com/kailugaji/ %% 定义变量 alpha1 = 0.9; alpha2 = 0.6; alpha3 = 0.3; % 1>alpha1>alpha2>alpha3>0 %% 求解开始 T = 2; % 区间右端点 tau = 0.1; % 步长 TT = 0:tau:T; % t变量序列,也就是方程中的自变量t N = length(TT)-1; % t变量序列个数-1 % 定义三个1*N的0矩阵用来储存方程中每一项的系数 b_alpha1 = zeros(1,N); b_alpha2 = zeros(1,N); b_alpha3 = zeros(1,N); % 循环开始 for k = 0 : (N-1) b_alpha1(k+1) = ((1+k)^(1-alpha1)-(k)^(1-alpha1))/gamma(2-alpha1); b_alpha2(k+1) = ((1+k)^(1-alpha2)-(k)^(1-alpha2))/gamma(2-alpha2)*tau^(alpha1-alpha2); b_alpha3(k+1) = ((1+k)^(1-alpha3)-(k)^(1-alpha3))/gamma(2-alpha3)*tau^(alpha1-alpha3); end coe_0 = b_alpha1(0+1) + b_alpha2(0+1) + b_alpha3(0+1); U = zeros(1,N+1); % 储存计算的结果 for n = 1:N temp = 0; for k = 0 : n-2 temp = temp + (b_alpha1(n-k-1+1) + b_alpha2(n-k-1+1) + b_alpha3(n-k-1+1))*(U(k+1+1)-U(k+1)); end temp0 = U(n); while 1 temp1 = U(n-1+1) - temp /coe_0+ tau^(alpha1)*right_fun(TT(n+1),temp0,alpha1,alpha2,alpha3)/coe_0; % 计算误差 如果前一次迭代和后一次迭代的误差小于10^-7,那么久退出循环,并把最后一次迭代的值赋给U if abs(temp0-temp1) < 10^(-7) U(n+1) = temp1; break; else temp0 = temp1; end end end True_sol = true_fun(TT,alpha1); % 真实值 plot(TT,U,"-") hold on plot(TT,True_sol,"r*") legend("数值解","解析解","Location","northwest") title("Algorithm 1"); xlabel("t"); ylabel("u(t)"); err = max(abs(U-True_sol)); % 误差 saveas(gcf,sprintf("Algorithm 1.jpg"),"bmp"); %保存图片 fprintf("方法一中解析解与数值解之间的误差为:%f ", err); function aa = true_fun(t,alpha1) aa = t.^(2+alpha1); end function bb = right_fun(t,u,alpha1,alpha2,alpha3) bb = gamma(3+alpha1)/gamma(3)*t.^2+gamma(3+alpha1)/gamma(3+alpha1-alpha2)*t.^(2+alpha1-alpha2)+gamma(3+alpha1)/gamma(3+alpha1-alpha3)*t.^(2+alpha1-alpha3)+sin(t.^(2+alpha1))-sin(u); end