Python图像读写方法对比
训练视觉相关的神经网络模型时,总是要用到图像的读写。方法有很多,比如matplotlib、cv2、PIL等。下面比较几种读写方式,旨在选出一个最快的方式,提升训练速度。
实验标准
因为训练使用的框架是Pytorch,因此读取的实验标准如下:
1、读取分辨率都为1920×1080的5张图片(png格式一张,jpg格式四张)并保存到数组。
2、将读取的数组转换为维度顺序为CxHxW的Pytorch张量,并保存到显存中(我使用GPU训练),其中三个通道的顺序为RGB。
3、记录各个方法在以上操作中所耗费的时间。因为png格式的图片大小差不多是质量有微小差异的jpg格式的10倍,所以数据集通常不会用png来保存,就不比较这两种格式的读取时间差异了。
写入的实验标准如下:
1、将5张1920×1080的5张图像对应的Pytorch张量转换为对应方法可使用的数据类型数组。
2、以jpg格式保存五张图片。
3、记录各个方法保存图片所耗费的时间。
实验情况
cv2
因为有GPU,所以cv2读取图片有两种方式:
1、先把图片都读取为一个numpy数组,再转换成保存在GPU中的pytorch张量。
2、初始化一个保存在GPU中的pytorch张量,然后将每张图直接复制进这个张量中。
第一种方式实验代码如下:
import os, torch import cv2 as cv import numpy as np from time import time read_path = ‘D:test‘ write_path = ‘D:testwrite‘ # cv2读取 1 start_t = time() imgs = np.zeros([5, 1080, 1920, 3]) for img, i in zip(os.listdir(read_path), range(5)): img = cv.imread(filename=os.path.join(read_path, img)) imgs[i] = img imgs = torch.tensor(imgs).to(‘cuda‘)[...,[2,1,0]].permute([0,3,1,2])/255 print(‘cv2 读取时间1:‘, time() - start_t) # cv2保存 start_t = time() imgs = (imgs.permute([0,2,3,1])[...,[2,1,0]]*255).cpu().numpy() for i in range(imgs.shape[0]): cv.imwrite(write_path + str(i) + ‘.jpg‘, imgs[i]) print(‘cv2 保存时间:‘, time() - start_t)