80 道大厂算法高频面试题
CV:
1. 常见的模型加速方法
2. 目标检测里如何有效解决常见的前景少背景多的问题
3. 目标检测里有什么情况是SSD、YOLOv3、Faster R-CNN等所不能解决的,假设网络拟合能力无限强
4. ROIPool和ROIAlign的区别
5. 介绍常见的梯度下降优化方法
6. Detection你觉的还有哪些可做的点
7. mini-Batch SGD相对于GD有什么优点
8. 人体姿态估计主流的两个做法是啥?简单介绍下
9. 卷积的实现原理以及如何快速高效实现局部weight sharing的卷积操作方式
10. CycleGAN的生成效果为啥一般都是位置不变纹理变化,为啥不能产生不同位置的生成效果
ML:
1. 写出全概率公式&贝叶斯公式
2. 模型训练为什么要引入偏差(bias)和方差(variance)? 证
3. CRF/朴素贝叶斯/EM/最大熵模型/马尔科夫随机场/混合高斯模型
4. 如何解决过拟合问题?
5. One-hot的作用是什么?为什么不直接使用数字作为表示
6. 决策树和随机森林的区别是什么?
7. 朴素贝叶斯为什么“朴素naive”?
8. kmeans初始点除了随机选取之外的方法
9. LR明明是分类模型为什么叫回归
10. 梯度下降如何并行化
11. LR中的L1/L2正则项是啥
12. 简述决策树构建过程
13. 解释Gini系数
14. 决策树的优缺点
15. 出现估计概率值为 0 怎么处理
16. 随机森林的生成过程
17. 介绍一下Boosting的思想
18. gbdt的中的tree是什么tree?有什么特征
19. xgboost对比gbdt/boosting Tree有了哪些方向上的优化
20. 什么叫最优超平面
21. 什么是支持向量
22. SVM如何解决多分类问题
23. 核函数的作用是啥
80 道大厂算法高频面试题
原文地址:https://www.cnblogs.com/Ph-one/p/13431255.html