Python 按分类样本数占比生成并随机获取样本数据
按分类样本数占比生成并随机获取样本数据
By:授客 QQ:1033553122
开发环境
win 10
python 3.6.5
需求
已知样本分类,每种分类的样本占比数,及样本总数,需要随机获取这些分类的样本。比如,我有4种任务,分别为任务A,任务B,任务C,任务D, 每种任务需要重复执行的总次数为1000,每次执行随机获取一种任务来执行,不同分类任务执行次数占比为 A:B:C:D = 3:5:7:9
代码实现
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = "shouke" import random def get_class_instance_by_proportion(class_proportion_dict, amount): """ 根据每种分类的样本数比例,及样本总数,为每每种分类构造样本数据 class_proportion_dict: 包含分类及其分类样本数占比的字典:{"分类(id)": 分类样本数比例} amount: 所有分类的样本数量总和 返回一个列表:包含所有分类样本的list """ bucket = [] proportion_sum = sum([weight for group_id, weight in class_proportion_dict.items()]) residuals = {} # 存放每种分类的样本数计算差值 for class_id, weight in class_proportion_dict.items(): percent = weight / float(proportion_sum) class_instance_num = int(round(amount * percent)) bucket.extend([class_id for x in range(class_instance_num)]) residuals[class_id] = amount * percent - round(amount * percent) if len(bucket) < amount: # 计算获取的分类样本总数小于给定的分类样本总数,则需要增加分类样本数,优先给样本数计算差值较小的分类增加样本数,每种分类样本数+1,直到满足数量为止 for class_id in [l for l, r in sorted(residuals.items(), key=lambda x: x[1], reverse=True)][: amount - len(bucket)]: bucket.append(class_id) elif len(bucket) > amount: # # 计算获取的分类样本总数大于给定的分类样本总数,则需要减少分类样本数,优先给样本数计算差值较大的分类减少样本数,每种分类样本数-1,直到满足数量为止 for class_id in [l for l, r in sorted(residuals.items(), key=lambda x: x[1])][: len(bucket) - amount]: bucket.remove(class_id) return bucket class A: def to_string(self): print("A class instance") class B: def to_string(self): print("B class instance") class C: def to_string(self): print("C class instance") class D: def to_string(self): print("D class instance") classes_map = {1: A, 2: B, 3:C, 4: D} class_proportion_dict = {1: 3, 2: 5, 3:7, 4: 9} # {分类id: 样本数比例} ,即期望4个分类的样本数比例为为 3:5:7:9 class_instance_num = 1000 # 样本总数 result_list = get_class_instance_by_proportion(class_proportion_dict, class_instance_num) for class_id in class_proportion_dict: print("%s %s" % (classes_map[class_id], result_list.count(class_id))) # 制造样本并随机获取样本 random.shuffle(result_list) while result_list: class_id = random.sample(result_list, 1)[0] classes_map[class_id]().to_string() result_list.remove(class_id)