JUC学习-线程池部分
自定义线程池
package com.appletree24;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.HashSet;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
class Main {
public static void main(String[] args) throws ExecutionException, InterruptedException {
ThreadPool threadPool = new ThreadPool(2, 1000, TimeUnit.MICROSECONDS, 5, (queue, task) -> {
//带超时等待
// queue.offer(task,500,TimeUnit.MILLISECONDS);
});
for (int i = 0; i < 10; i++) {
int j = i;
threadPool.execute(() -> {
try {
Thread.sleep(1000L);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(j);
});
}
}
}
//策略模式接口 此处使用策略模式是因为在实现拒绝策略时,有许多种拒绝的方式,这些方式如果不使用恰当的模式,就需要大量的if..else来编写
//且方式数量大于4个,会造成类膨胀的问题,推荐使用混合模式
//https://www.runoob.com/design-pattern/strategy-pattern.html
@FunctionalInterface
interface RejectPolicy<T> {
void reject(BlockingQueue<T> queue, T task);
}
class ThreadPool {
//任务队列
private BlockingQueue<Runnable> taskQueue;
//线程集合
private HashSet<Worker> workers = new HashSet<>();
//线程数
private int coreSize;
//超时时间
private long timeout;
private TimeUnit timeUnit;
private RejectPolicy<Runnable> rejectPolicy;
//执行任务
public void execute(Runnable task) {
//当任务数未超过核心线程数时,直接交给Worker对象执行
//如果超过,则加入阻塞任务队列,暂存起来
synchronized (workers) {
if (workers.size() < coreSize) {
Worker worker = new Worker(task);
workers.add(worker);
worker.start();
} else {
//第一种选择死等
// taskQueue.put(task);
//第二种为超时等待
//第三种为消费者放弃任务执行
//第四种为主线程抛出异常
//第五种让调用者自行执行任务
taskQueue.tryPut(rejectPolicy, task);
}
}
}
public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity, RejectPolicy<Runnable> rejectPolicy) {
this.coreSize = coreSize;
this.timeout = timeout;
this.timeUnit = timeUnit;
this.taskQueue = new BlockingQueue<>(queueCapcity);
this.rejectPolicy = rejectPolicy;
}
class Worker extends Thread {
private Runnable task;
public Worker(Runnable task) {
this.task = task;
}
@Override
public void run() {
//执行任务
//1.当传递过来的task不为空,执行任务
//2.当task执行完毕,再接着取下一个任务并执行
while (task != null || (task = taskQueue.poll(1000, TimeUnit.MILLISECONDS)) != null) {
try {
task.run();
} catch (Exception e) {
e.printStackTrace();
} finally {
task = null;
}
}
synchronized (workers) {
workers.remove(this);
}
}
}
}
class BlockingQueue<T> {
//1. 任务队列
private final Deque<T> queue = new ArrayDeque<>();
//2. 锁
private final ReentrantLock lock = new ReentrantLock();
//3. 生产者条件变量
private final Condition fullWaitSet = lock.newCondition();
//4. 消费者条件变量
private final Condition emptyWaitSet = lock.newCondition();
//5. 容量上限
private int capcity;
public BlockingQueue(int capcity) {
this.capcity = capcity;
}
//带超时的等待获取
public T poll(long timeout, TimeUnit unit) {
lock.lock();
long nanos = unit.toNanos(timeout);
try {
while (queue.isEmpty()) {
try {
if (nanos <= 0) {
return null;
}
nanos = emptyWaitSet.awaitNanos(nanos);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.removeFirst();
fullWaitSet.signal();
return t;
} finally {
lock.unlock();
}
}
//消费者拿取任务的方法
public T take() {
lock.lock();
try {
while (queue.isEmpty()) {
try {
emptyWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
T t = queue.removeFirst();
fullWaitSet.signal();
return t;
} finally {
lock.unlock();
}
}
//阻塞添加
public void put(T task) {
lock.lock();
try {
while (queue.size() == capcity) {
try {
fullWaitSet.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.offerLast(task);
//添加完后唤醒消费者等待
emptyWaitSet.signal();
} finally {
lock.unlock();
}
}
//带超时时间的阻塞添加
public boolean offer(T task, long timeout, TimeUnit unit) {
lock.lock();
try {
long nanos = unit.toNanos(timeout);
while (queue.size() == capcity) {
try {
if (nanos <= 0) return false;
nanos = fullWaitSet.awaitNanos(nanos);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
queue.offerLast(task);
//添加完后唤醒消费者等待
emptyWaitSet.signal();
return true;
} finally {
lock.unlock();
}
}
//获取当前阻塞队列大小
public int size() {
lock.lock();
try {
return queue.size();
} finally {
lock.unlock();
}
}
public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
lock.lock();
try {
//判断队列是否已满
if (queue.size() == capcity) {
rejectPolicy.reject(this, task);
} else {
queue.addLast(task);
emptyWaitSet.signal();
}
} finally {
lock.unlock();
}
}
}
上述的自定义线程池虽然能够执行完毕主线程给予的任务,但任务全部执行结束后,开辟的线程池内核心线程仍然在运行,并没有结束,这是因为目前线程池中的take方法仍然为不会有超时等待的take方法,造成了死等,需要为其加入超时停止的功能。也就是替代take()的poll()
JDK自带线程池
介绍
ThreadPoolExecutor使用int的高三位表示线程池状态,低29位表示线程数量
在ThreadPoolExecutor中,同样也存在拒绝策略。其图结构如下:
其中接口就对应着在自定义线程池中实现的策略模式接口,下面的四个实现类就对应着四种不同的拒绝方式:
利用工具类创建固定大小线程池
利用工具类创建带缓冲的线程池
从源码可以看出,带缓冲的线程池中缓冲队列的使用的是一个名为SynchronousQueue
的队列,这个队列的特点如下:队列不具有容量,当没有线程来取时,是无法对其内部放入数据的,例如队列内部已有一个数字1,但此时没有线程取走,则线此队列目前并不能继续存入数据,直到1被取走
利用工具类创建单线程线程池
从源码可以看出,单线程线程池中核心线程数与最大线程数相等,即不存在应急线程。只能解决一个任务
那么这个线程池和我自己创建一个线程的线程池有什么区别呢?区别如下:
ThreadPoolExecutor-submit method
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(2);
Future<String> result = pool.submit(() -> {
System.out.println("running");
Thread.sleep(1000);
return "ok";
});
System.out.println(result.get());
}
submit方法可以传入Runnable和Callable类型的参数,并且将线程内部所执行任务的结果返回,用Future包装
ThreadPoolExecutor-invokeAll
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(2);
List<Future<String>> results = pool.invokeAll(Arrays.asList(() -> {
System.out.println("begin");
Thread.sleep(1000);
return "1";
},
() -> {
System.out.println("begin");
Thread.sleep(500);
return "2";
}));
results.forEach(f -> {
try {
System.out.printf(f.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
}
invokeAll方法可以传入任务的集合,同样的任务的返回值也会以列表形式返回
ThreadPoolExecutor-invokeAny
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(2);
String result = pool.invokeAny(Arrays.asList(() -> {
System.out.println("begin");
Thread.sleep(1000);
return "1";
},
() -> {
System.out.println("begin");
Thread.sleep(500);
return "2";
}));
pool.awaitTermination(1000, TimeUnit.MILLISECONDS);
System.out.println(result);
}
invokeAny方法同样可以传入任务的集合,只不过最后返回的结果并不是任务的结果集合,而是最早完成的那个任务的结果。
ThreadPoolExecutor-shutdown
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(2);
List<Future<String>> results = pool.invokeAll(Arrays.asList(() -> {
System.out.println("begin");
Thread.sleep(1000);
return "1";
},
() -> {
System.out.println("begin");
Thread.sleep(500);
return "2";
}));
pool.shutdown();
results.forEach(f -> {
try {
System.out.println(f.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
}
shutdown方法会将线程池的状态变为SHUTDOWN
- 不会接受新任务
- 但已提交的任务会执行完
- 此方法不会阻塞调用线程的执行
ThreadPoolExecutor-shutdownNow
public static void main(String[] args) throws ExecutionException, InterruptedException {
ExecutorService pool = Executors.newFixedThreadPool(2);
List<Future<String>> results = pool.invokeAll(Arrays.asList(() -> {
System.out.println("begin");
Thread.sleep(1000);
return "1";
},
() -> {
System.out.println("begin");
Thread.sleep(500);
return "2";
}));
List<Runnable> runnables = pool.shutdownNow();
results.forEach(f -> {
try {
System.out.println(f.get());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
});
}
shutdownNow方法会将线程池状态变为STOP
- 不会接受新任务
- 会将队列中现有的任务返回
- 并且用interrupt方法中断正在执行的任务