Python教程:高级特性

Python教程:高级特性

1.切片

L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。

如果第一个索引是0,还可以省略:

>>> L =["Michael", "Sarah", "Tracy", "Bob", "Jack"]
>>> L[:3] ["Michael", "Sarah", "Tracy"]

也可以从索引1开始,取出2个元素出来:

>>> L[1:3]
["Sarah", "Tracy"]

类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,

>>> L[-2:]
["Bob", "Jack"]
>>> L[-2:-1]
["Bob"]

记住倒数第一个元素的索引是-1。

切片操作十分有用。我们先创建一个0-99的数列:

>>> L = list(range(100))
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前10个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每5个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串”xxx”也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> "ABCDEFG"[:3]
"ABC"

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

S = "abcdefg"
print(S[:2]) # ab
print(S[::2]) # aceg
print(S[::3]) # adg 

2.迭代

如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

在Python中,迭代是通过for … in来完成的,而很多语言比如C或者Java,迭代list是通过下标完成的,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。

list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:

>>> d = {"a": 1, "b": 2, "c": 3}
>>> for key in d:
...     print(key)
a
c
b

因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。

由于字符串也是可迭代对象,因此,也可以作用于for循环:

>>> for ch in "ABC":
...     print(ch)
...
A
B
C

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance("abc", Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(["A", "B", "C"]):
...     print(i, value)

上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)

任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环。

3.列表生成式

即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

生成[1×1, 2×2, 3×3, …, 10×10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

列表生成式则可以用一行语句代替循环生成上面的list([1×1, 2×2, 3×3, …, 10×10]):

[x * x for x in range(1, 11)]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in "ABC" for n in "XYZ"]
["AX", "AY", "AZ", "BX", "BY", "BZ", "CX", "CY", "CZ"]

三层和三层以上的循环就很少用到

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir(".")] # os.listdir可以列出文件和目录
[".emacs.d", ".ssh", ".Trash", "Adlm", "Applications", "Desktop", "Documents", "Downloads", "Library", "Movies", "Music", "Pictures", "Public", "VirtualBox VMs", "Workspace", "XCode"]

for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:

>>> d = {"x": "A", "y": "B", "z": "C" }
>>> for k, v in d.items():
...     print(k, "=", v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {"x": "A", "y": "B", "z": "C" }
>>> [k + "=" + v for k, v in d.items()]
["y=B", "x=A", "z=C"]

最后把一个list中所有的字符串变成小写:

>>> L = ["Hello", "World", "IBM", "Apple"]
>>> [s.lower() for s in L]

练习2

L1 = ["Hello", "World", 18, "Apple", None]
print([x.lower() if isinstance(x, str) else x for x in L1])

4.生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

g = (x * x for x in range(10))
<generator object <genexpr> at 0x1022ef630>

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

next(g)

generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return "done"

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return "done"

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

>>> f = fib(6)
<generator object fib at 0x104feaaa0>

generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

尝试:在上面yield b 下边添加一行print(b),调用fib(6),并没有任何输出,只有遍历f的时候才会有输出。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
    print("step 1")
    yield 1
    print("step 2")
    yield(3)
    print("step 3")
    yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(6):
...     print(n)

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print("g:", x)
...     except StopIteration as e:
...         print("Generator return value:", e.value)
...         break

 

g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done 

要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

5.迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

  • 一类是集合数据类型,如list、tuple、dict、set、str等;
  • 一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance("abc", Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

可以使用isinstance()判断一个对象是否是Iterable对象:

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

  • 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
  • 可以使用isinstance()判断一个对象是否是Iterator对象:
#学习中遇到问题没人解答?小编创建了一个Python学习交流群:711312441
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance("abc", Iterator)
False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter("abc"), Iterator)
True

你可能会问,为什么list、dict、str等数据类型不是Iterator?

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

6.总结

  • 凡是可作用于for循环的对象都是Iterable类型;
  • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
  • 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break
hmoban主题是根据ripro二开的主题,极致后台体验,无插件,集成会员系统
自学咖网 » Python教程:高级特性