IO模型
该篇的IO模型主要针对的是网络IO的,其他IO不在本篇考虑范围之内!
IO模型简介
Stevens在文章中一共比较了五种IO Model,分别为:
* blocking IO 阻塞IO
* nonblocking IO 非阻塞IO
* IO multiplexing IO多路复用
* signal driven IO 信号驱动IO
* asynchronous IO 异步IO
由signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。
我们常见的io操作有:
同步异步
阻塞非阻塞
常见的网络阻塞状态:
accept
recv
recvfrom
send虽然它也有io行为 但是不在我们的考虑范围
IO传输数据时的图解
1)等待数据准备 (Waiting for the data to be ready)
2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
阻塞IO模型
我们之前写的都是阻塞IO模型 协程除外
# 在服务端开设多进程或者多线程 进程池线程池 其实还是没有解决IO问题
该等的地方还是得等 没有规避
只不过多个人等待的彼此互不干扰
非阻塞IO模型
虽然非阻塞IO给你的感觉非常的牛逼
但是该模型会 长时间占用着CPU并且不干活 让CPU不停的空转
我们实际应用中也不会考虑使用非阻塞IO模型
IO多路复用
"""
当监管的对象只有一个的时候 其实IO多路复用连阻塞IO都比比不上!!!
但是IO多路复用可以一次性监管很多个对象
server = socket.socket()
conn,addr = server.accept()
监管机制是操作系统本身就有的 如果你想要用该监管机制(select)
需要你导入对应的select模块
"""
import socket
import select
server = socket.socket()
server.bind(("127.0.0.1",8080))
server.listen(5)
server.setblocking(False)
read_list = [server]
while True:
r_list, w_list, x_list = select.select(read_list, [], [])
"""
帮你监管
一旦有人来了 立刻给你返回对应的监管对象
"""
# print(res) # ([<socket.socket fd=3, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=("127.0.0.1", 8080)>], [], [])
# print(server)
# print(r_list)
for i in r_list: #
"""针对不同的对象做不同的处理"""
if i is server:
conn, addr = i.accept()
# 也应该添加到监管的队列中
read_list.append(conn)
else:
res = i.recv(1024)
if len(res) == 0:
i.close()
# 将无效的监管对象 移除
read_list.remove(i)
continue
print(res)
i.send(b"heiheiheiheihei")
# 客户端
import socket
client = socket.socket()
client.connect(("127.0.0.1",8080))
while True:
client.send(b"hello world")
data = client.recv(1024)
print(data)
总结
"""
监管机制其实有很多
select机制 windows linux都有
poll机制 只在linux有 poll和select都可以监管多个对象 但是poll监管的数量更多
上述select和poll机制其实都不是很完美 当监管的对象特别多的时候
可能会出现 极其大的延时响应
epoll机制 只在linux有
它给每一个监管对象都绑定一个回调机制
一旦有响应 回调机制立刻发起提醒
针对不同的操作系统还需要考虑不同检测机制 书写代码太多繁琐
有一个人能够根据你跑的平台的不同自动帮你选择对应的监管机制
selectors模块
"""