高精度HighAccuracy_acwing.cpp
文章:
力扣模板:字符串相加 – 字符串相加 – 力扣(LeetCode)
acwing模板:常用代码模板1——基础算法 – AcWing
例题:
P1009 [NOIP1998 普及组] 阶乘之和 – 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
笔记:HighAccuracy_acwing.cpp
说明:参考acwing的模板,但是和acwing模板不完全相同
#include<bits/stdc++.h> using namespace std; //HighAccuracy_acwing.cpp /* 说明: 参考acwing的模板:https://www.acwing.com/blog/content/277/ 但是和acwing模板不完全相同 */ // C = A + B, A >= 0, B >= 0 //这里不加&,就可以避免改变了原来的a,b数组,使得a,b数组可以重复利用 vector<int> add(vector<int> A, vector<int> B){ //正序输入两个vector类型的“数” if (A.size() < B.size()) return add(B, A); //使得A数组是最大的 //如果未反转,在if下面加reverse,不能在if上面加reverse,否者二次反转,等于没有反转 reverse(A.begin(),A.end()); //反转数组,变成个十百千万··· reverse(B.begin(),B.end()); vector<int> C; //初始化答案数组 int t = 0; for (int i = 0; i < A.size(); i ++ ){ t += A[i]; if (i < B.size()) t += B[i]; //如果B还有数字 C.push_back(t % 10); t /= 10; } if (t) C.push_back(t);//最后一次加法可能还有进位的数,把最高位补上 return C; } string add(string a, string b){ if(a.size()<b.size()) return add(b,a); reverse(a.begin(),a.end()); reverse(b.begin(),b.end()); int t = 0; string c; for(int i = 0; i<a.size(); i++){ t += a[i] - "0"; if(i<b.size()) t+=b[i] - "0"; c.push_back(t%10 + "0"); t /= 10; } if(t) c.push_back(t + "0"); reverse(c.begin(), c.end()); return c; } // C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> A, vector<int> B){ vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; } while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; } /*高精度乘低精度 —— 模板题*/ // C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> A, int b){ //输入正序的高精度A和低精度b vector<int> C; //初始化答案数组 reverse(A.begin(),A.end()); //反转数组,变成个十百千万··· int t = 0; for (int i = 0; i < A.size() || t; i++ ){ //A数组还有数 或 t还有数 if (i < A.size()) t += A[i] * b; //如果 A数组还有数 C.push_back(t % 10); t /= 10; } while (C.size() > 1 && C.back() == 0) C.pop_back(); //末尾可能是0,都要去掉(我感觉是多余的,不可能有这种情况)(难道是处理b==0?) reverse(C.begin(),C.end()); //反转数组,恢复正序 return C; } string mul(string a, int b){ reverse(a.begin(), a.end()); string c; int t = 0; for(int i = 0; i<a.size() || t; i++){ if(i<a.size()) t += (a[i] - "0") * b; c.push_back(t%10 + "0"); t /= 10; } while(c.size()>1 && c.back() == 0)c.pop_back(); reverse(c.begin(), c.end()); return c; } int main(){ //加法 vector<int> addint1 = {1,2,3,4,5,6,7,8,9}; vector<int> addint2 = {9,8,7,6,5,4,3,2,1,0}; vector<int> addint3 = add(addint1,addint2); for(int i = 0;i<addint3.size(); i++) cout<<addint3[i]; printf(" "); //加法 string addstr1 = {"123456789"}; string addstr2 = {"9876543210"}; string addstr3 = add(addstr1,addstr2); cout<< addstr3 <<endl; //乘法 vector<int> mulint1 = {1,2,3,4,5,6,7,8,9}; int mulint2 = 100000; vector<int> mulint3 = mul(mulint1,mulint2); for(int i = 0;i<mulint3.size(); i++) cout<<mulint3[i]; printf(" "); //乘法 string mulstr1 = "123456789"; int mulstr2 = 100000; cout<<mul(mulstr1,mulstr2)<<endl; return 0; }