2.C++中的智能指针
智能指针的基础知识
智能指针能做到保证资源的自动释放
利用栈上对象离开作用自动析构的特性保证自动释放。
//智能指针简单的实现
template<typename T>
class CSmartPtr{
public:
CSmartPtr(T* ptr= nullptr):_mptr(ptr){
}
~CSmartPtr(){
delete _mptr;
}
T& operator*(){
return *_mptr;
}
T* operator->(){
return _mptr;
}
private:
T* _mptr;
};
不带引用计数的智能指针
在使用智能指针的使用要先引用memory库
stl中提供了三种不带引用计数的智能指针:auto_ptr、scoped_ptr和unique_ptr
auto_ptr在使用过程中,如果进行赋值和拷贝运算时,会将第一个指针置空,让拷贝或赋值的指针管理之前的内存。基本不使用这个
一个面试题:可以在vector中使用auto_ptr吗?
答:最好不要,因为在使用容器的过程中,难免会发生拷贝(容器1复制到容器2),而auto_ptr的实现方式中为了避免浅拷贝,会把初始的指针置为空,让赋值的指针管理这块内存,之前的指针失去了堆内存的管理权,这样再访问容器1就会发现其中的都是空指针。
scoped_ptr中将拷贝构造函数和赋值重载函数都删除了,从源码中禁止了拷贝和赋值。这个指针用的也比较少
推荐使用unique_ptr,与scoped_ptr相同,也是删除了拷贝构造和赋值重载函数,但是定义了移动构造函数,在调用过程中需要使用move函数,可以对右值进行接管,好处是用户可以感知之前的指针不能再对内存进行管理了,心中有数。
带引用计数的智能指针
自己实现:
template<typename T>
class RefCnt {//计数类
public:
RefCnt<T>(T *ptr = nullptr) : _mptr(ptr) {
if (_mptr != nullptr) {
_mcount = 1;
}
}
void addRef() { _mcount++; }
int delRef() { return --_mcount; }
private:
T *_mptr;
int _mcount;
};
template<typename T>
class CSmartPtr {
public:
CSmartPtr(T *ptr = nullptr) : _mptr(ptr) {
_mRefPtr = new RefCnt<T>(_mptr);
}
~CSmartPtr() {
if (0 == _mRefPtr->delRef()) {
delete _mptr;
_mptr = nullptr;
}
}
CSmartPtr<T>(const CSmartPtr<T> &src)
: _mptr(src._mptr), _mRefPtr(src._mRefPtr) {
if (_mptr != nullptr)
_mRefPtr->addRef();
}
CSmartPtr<T> &operator=(const CSmartPtr<T> &src) {
if (this == &src) {
return *this;
}
if (0 == _mRefPtr->delRef()) {
delete _mptr;
}
_mptr = src._mptr;
_mRefPtr = src._mRefPtr;
_mRefPtr->addRef();
return *this;
}
T &operator*() {
return *_mptr;
}
T *operator->() {
return _mptr;
}
private:
T *_mptr;
RefCnt<T> *_mRefPtr;
};
shared_ptr交叉引用问题
stl中提供了两个带有引用计数的智能指针
shared_ptr:强智能指针,可以改变资源的引用计数
weak_ptr:弱智能指针,不会改变资源的引用计数
有这样一例子,是shared_ptr的交叉引用:
#include <iostream>
#include <memory>
using namespace std;
class B; // 前置声明类B
class A
{
public:
A() { cout << "A()" << endl; }
~A() { cout << "~A()" << endl; }
shared_ptr<B> _ptrb; // 指向B对象的智能指针
};
class B
{
public:
B() { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
shared_ptr<A> _ptra; // 指向A对象的智能指针
};
int main()
{
shared_ptr<A> ptra(new A());// ptra指向A对象,A的引用计数为1
shared_ptr<B> ptrb(new B());// ptrb指向B对象,B的引用计数为1
ptra->_ptrb = ptrb;// A对象的成员变量_ptrb也指向B对象,B的引用计数为2
ptrb->_ptra = ptra;// B对象的成员变量_ptra也指向A对象,A的引用计数为2
cout << ptra.use_count() << endl; // 打印A的引用计数结果:2
cout << ptrb.use_count() << endl; // 打印B的引用计数结果:2
/*
出main函数作用域,ptra和ptrb两个局部对象析构,分别给A对象和
B对象的引用计数从2减到1,达不到释放A和B的条件(释放的条件是
A和B的引用计数为0),因此造成两个new出来的A和B对象无法释放,
导致内存泄露,这个问题就是“强智能指针的交叉引用(循环引用)问题”
*/
return 0;
}
代码打印结果:
A()
B()
2
2
可以看到,A和B对象并没有进行析构,通过上面的代码示例,能够看出来“交叉引用”的问题所在,就是对象无法析构,资源无法释放,那怎么解决这个问题呢?请注意强弱智能指针的一个重要应用规则:定义对象时,用强智能指针shared_ptr,在其它地方引用对象时,使用弱智能指针weak_ptr。
弱智能指针weak_ptr区别于shared_ptr之处在于:
weak_ptr
不会改变资源的引用计数,只是一个观察者的角色,通过观察shared_ptr
来判定资源是否存在weak_ptr
持有的引用计数,不是资源的引用计数,而是同一个资源的观察者的计数weak_ptr
没有提供常用的指针操作,无法直接访问资源,需要先通过lock
方法提升为shared_ptr
强智能指针,才能访问资源
那么上面的代码怎么修改,也就是如何解决带引用计数的智能指针的交叉引用问题,代码如下:
#include <iostream>
#include <memory>
using namespace std;
class B; // 前置声明类B
class A
{
public:
A() { cout << "A()" << endl; }
~A() { cout << "~A()" << endl; }
weak_ptr<B> _ptrb; // 指向B对象的弱智能指针。引用对象时,用弱智能指针
};
class B
{
public:
B() { cout << "B()" << endl; }
~B() { cout << "~B()" << endl; }
weak_ptr<A> _ptra; // 指向A对象的弱智能指针。引用对象时,用弱智能指针
};
int main()
{
// 定义对象时,用强智能指针
shared_ptr<A> ptra(new A());// ptra指向A对象,A的引用计数为1
shared_ptr<B> ptrb(new B());// ptrb指向B对象,B的引用计数为1
// A对象的成员变量_ptrb也指向B对象,B的引用计数为1,因为是弱智能指针,引用计数没有改变
ptra->_ptrb = ptrb;
// B对象的成员变量_ptra也指向A对象,A的引用计数为1,因为是弱智能指针,引用计数没有改变
ptrb->_ptra = ptra;
cout << ptra.use_count() << endl; // 打印结果:1
cout << ptrb.use_count() << endl; // 打印结果:1
/*
出main函数作用域,ptra和ptrb两个局部对象析构,分别给A对象和
B对象的引用计数从1减到0,达到释放A和B的条件,因此new出来的A和B对象
被析构掉,解决了“强智能指针的交叉引用(循环引用)问题”
*/
return 0;
}
代码打印如下:
A()
B()
1
1
~B()
~A
可以看到,A和B对象正常析构,问题解决!
多线程访问共享对象的线程安全问题
有一个用C++写的开源网络库,muduo库,作者陈硕,大家可以在网上下载到muduo的源代码,该源码中对于智能指针的应用非常优秀,其中借助shared_ptr和weak_ptr解决了这样一个问题,多线程访问共享对象的线程安全问题,解释如下:线程A和线程B访问一个共享的对象,如果线程A正在析构这个对象的时候,线程B又要调用该共享对象的成员方法,此时可能线程A已经把对象析构完了,线程B再去访问该对象,就会发生不可预期的错误。
先看如下代码:
#include <iostream>
#include <thread>
using namespace std;
class Test
{
public:
// 构造Test对象,_ptr指向一块int堆内存,初始值是20
Test() :_ptr(new int(20))
{
cout << "Test()" << endl;
}
// 析构Test对象,释放_ptr指向的堆内存
~Test()
{
delete _ptr;
_ptr = nullptr;
cout << "~Test()" << endl;
}
// 该show会在另外一个线程中被执行
void show()
{
cout << *_ptr << endl;
}
private:
int *volatile _ptr;
};
void threadProc(Test *p)
{
// 睡眠两秒,此时main主线程已经把Test对象给delete析构掉了
std::this_thread::sleep_for(std::chrono::seconds(2));
/*
此时当前线程访问了main线程已经析构的共享对象,结果未知,隐含bug。
此时通过p指针想访问Test对象,需要判断Test对象是否存活,如果Test对象
存活,调用show方法没有问题;如果Test对象已经析构,调用show有问题!
*/
p->show();
}
int main()
{
// 在堆上定义共享对象
Test *p = new Test();
// 使用C++11的线程类,开启一个新线程,并传入共享对象的地址p
std::thread t1(threadProc, p);
// 在main线程中析构Test共享对象
delete p;
// 等待子线程运行结束
t1.join();
return 0;
}
运行上面的代码,发现在main主线程已经delete析构Test对象以后,子线程threadProc再去访问Test对象的show方法,无法打印出*_ptr的值20。可以用shared_ptr和weak_ptr来解决多线程访问共享对象的线程安全问题,上面代码修改如下:
#include <iostream>
#include <thread>
#include <memory>
using namespace std;
class Test
{
public:
// 构造Test对象,_ptr指向一块int堆内存,初始值是20
Test() :_ptr(new int(20))
{
cout << "Test()" << endl;
}
// 析构Test对象,释放_ptr指向的堆内存
~Test()
{
delete _ptr;
_ptr = nullptr;
cout << "~Test()" << endl;
}
// 该show会在另外一个线程中被执行
void show()
{
cout << *_ptr << endl;
}
private:
int *volatile _ptr;
};
void threadProc(weak_ptr<Test> pw) // 通过弱智能指针观察强智能指针
{
// 睡眠两秒
std::this_thread::sleep_for(std::chrono::seconds(2));
/*
如果想访问对象的方法,先通过pw的lock方法进行提升操作,把weak_ptr提升
为shared_ptr强智能指针,提升过程中,是通过检测它所观察的强智能指针保存
的Test对象的引用计数,来判定Test对象是否存活,ps如果为nullptr,说明Test对象
已经析构,不能再访问;如果ps!=nullptr,则可以正常访问Test对象的方法。
*/
shared_ptr<Test> ps = pw.lock();
if (ps != nullptr)
{
ps->show();
}
}
int main()
{
// 在堆上定义共享对象
shared_ptr<Test> p(new Test);
// 使用C++11的线程,开启一个新线程,并传入共享对象的弱智能指针
std::thread t1(threadProc, weak_ptr<Test>(p));
// 在main线程中析构Test共享对象
// 等待子线程运行结束
t1.join();
return 0;
}
运行上面的代码,show方法可以打印出20,因为main线程调用了t1.join()方法等待子线程结束,此时pw通过lock提升为ps成功,见上面代码示例。
如果设置t1为分离线程,让main主线程结束,p智能指针析构,进而把Test对象析构,此时show方法已经不会被调用,因为在threadProc方法中,pw提升到ps时,lock方法判定Test对象已经析构,提升失败!main函数代码可以如下修改测试:
int main()
{
// 在堆上定义共享对象
shared_ptr<Test> p(new Test);
// 使用C++11的线程,开启一个新线程,并传入共享对象的弱智能指针
std::thread t1(threadProc, weak_ptr<Test>(p));
// 在main线程中析构Test共享对象
// 设置子线程分离
t1.detach();
return 0;
}
该main函数运行后,最终的threadProc中,show方法不会被执行到。以上是在多线程中访问共享对象时,对shared_ptr和weak_ptr的一个典型应用。
自定义删除器
标准库中的智能指针中默认的析构方法是delete p
,如果使用智能指针指向数组或者是文件就需要自定义删除器。传统的方式是通过自定义函数对象作为删除器,这种方式会构造大量无关的代码,所以在C++11中引入了function
和lambda表达式,减少代码量。至于为什么要用函数对象:通过函数对象调用operator(),可以省略函数的调用开销,比通过函数指针调用函数(不能够inline内联调用)效率高。(见8.C++STL倒数第二段)
unique_ptr<int,function<void(int*)>> ptr1(new int[100],
[](int *p)->void{//使用lambda表达式
cout<<"call lambda release int[100]"<<endl;
delete[] p;
});
unique_ptr<FILE,function<void(FILE*)>> ptr2(fopen("data.txt","w"),
[](FILE* p)->void {
cout<<"call lambda release FILE*"<<endl;
fclose(p);
});