畅游Flink之API-Part1(Java版)
1.Transform
1.1.基本转换算子
map/flatMap/filter
- map
把数组流中的每一个值,使用所提供的函数执行一遍,一一对应。得到元素个数相同的数组流
- flatmap
flat是扁平的意思。它把数组流中的每一个值,使用所提供的函数执行一遍,一一对应。得到元素相同的数组流。只不过,里面的元素也是一个子数组流。把这些子数组合并成一个数组以后,元素个数大概率会和原数组流的个数不同。
package com.frankcooper.apitest.transform;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class TransformTest1 {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 使得任务抢占同一个线程
env.setParallelism(1);
// 从文件中获取数据输出
DataStream<String> dataStream = env.readTextFile("/Users/frankcooper/IdeaProjects/spring-boot-climbing/bigdata-flink-grab/src/main/resources/sensor.txt");
// 1. map, String => 字符串长度INT
DataStream<Integer> mapStream = dataStream.map(new MapFunction<String, Integer>() {
@Override
public Integer map(String value) throws Exception {
return value.length();
}
});
// 2. flatMap,按逗号分割字符串
DataStream<String> flatMapStream = dataStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
String[] fields = value.split(",");
for (String field : fields) {
out.collect(field);
}
}
});
// 3. filter,筛选"sensor_1"开头的数据
DataStream<String> filterStream = dataStream.filter(new FilterFunction<String>() {
@Override
public boolean filter(String value) throws Exception {
return value.startsWith("sensor_1");
}
});
// 打印输出
mapStream.print("map");
flatMapStream.print("flatMap");
filterStream.print("filter");
env.execute();
}
}
输入sensor.txt
sensor_1,1547718199,35.8
sensor_6,1547718201,15.4
sensor_7,1547718202,6.7
sensor_10,1547718205,38.1
sensor_1,1547718207,36.3
sensor_1,1547718209,32.8
sensor_1,1547718212,37.1
打印结果:
map> 24
flatMap> sensor_1
flatMap> 1547718199
flatMap> 35.8
filter> sensor_1,1547718199,35.8
map> 24
flatMap> sensor_6
flatMap> 1547718201
flatMap> 15.4
map> 23
flatMap> sensor_7
flatMap> 1547718202
flatMap> 6.7
map> 25
flatMap> sensor_10
flatMap> 1547718205
flatMap> 38.1
filter> sensor_10,1547718205,38.1
map> 24
flatMap> sensor_1
flatMap> 1547718207
flatMap> 36.3
filter> sensor_1,1547718207,36.3
map> 24
flatMap> sensor_1
flatMap> 1547718209
flatMap> 32.8
filter> sensor_1,1547718209,32.8
map> 24
flatMap> sensor_1
flatMap> 1547718212
flatMap> 37.1
filter> sensor_1,1547718212,37.1
1.2.多流转换算子
split/connect/union
DataStream -> SplitStream
- 根据某些特征把DataStream拆分成SplitStream, SplitStream虽然看起来像是两个Stream,但是其实它是一个特殊的Stream
import com.frankcooper.apitest.beans.SensorReading;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.SplitStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import java.util.Collections;
public class TransformTest4_MultipleStreams {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("/Users/frankcooper/IdeaProjects/spring-boot-climbing/bigdata-flink-grab/src/main/resources/sensor.txt");
// 转换成SensorReading
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
} );
// 1. 分流,按照温度值30度为界分为两条流
SplitStream<SensorReading> splitStream = dataStream.split(new OutputSelector<SensorReading>() {
@Override
public Iterable<String> select(SensorReading value) {
return (value.getTemperature() > 30) ? Collections.singletonList("high") : Collections.singletonList("low");
}
});
DataStream<SensorReading> highTempStream = splitStream.select("high");
DataStream<SensorReading> lowTempStream = splitStream.select("low");
DataStream<SensorReading> allTempStream = splitStream.select("high", "low");
highTempStream.print("high");
lowTempStream.print("low");
allTempStream.print("all");
env.execute();
}
}
输出
high> SensorReading{id="sensor_1", timestamp=1547718199, temperature=35.8}
all > SensorReading{id="sensor_1", timestamp=1547718199, temperature=35.8}
low > SensorReading{id="sensor_6", timestamp=1547718201, temperature=15.4}
all > SensorReading{id="sensor_6", timestamp=1547718201, temperature=15.4}
...
DataStream,DataStream -> ConnectedStreams
- 连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。
DataStream -> DataStream
- 对两个或者两个以上的DataStream进行Union操作,产生一个包含多有DataStream元素的新DataStream。
对比
- 1.Connect 的数据类型可以不同,Connect 只能合并两个流;
- 2.Union可以合并多条流,Union的数据结构必须是一样的;
import com.frankcooper.apitest.beans.SensorReading;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.SplitStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import java.util.Collections;
/**
* @ClassName: TransformTest4_MultipleStreams
* @Description:
* @Author: wushengran on 2020/11/7 16:14
* @Version: 1.0
*/
public class TransformTest4_MultipleStreams {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 从文件读取数据
DataStream<String> inputStream = env.readTextFile("D:\Projects\BigData\FlinkTutorial\src\main\resources\sensor.txt");
// 转换成SensorReading
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
} );
// 1. 分流,按照温度值30度为界分为两条流
SplitStream<SensorReading> splitStream = dataStream.split(new OutputSelector<SensorReading>() {
@Override
public Iterable<String> select(SensorReading value) {
return (value.getTemperature() > 30) ? Collections.singletonList("high") : Collections.singletonList("low");
}
});
DataStream<SensorReading> highTempStream = splitStream.select("high");
DataStream<SensorReading> lowTempStream = splitStream.select("low");
DataStream<SensorReading> allTempStream = splitStream.select("high", "low");
// highTempStream.print("high");
// lowTempStream.print("low");
// allTempStream.print("all");
// 2. 合流 connect,将高温流转换成二元组类型,与低温流连接合并之后,输出状态信息
DataStream<Tuple2<String, Double>> warningStream = highTempStream.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
@Override
public Tuple2<String, Double> map(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), value.getTemperature());
}
});
ConnectedStreams<Tuple2<String, Double>, SensorReading> connectedStreams = warningStream.connect(lowTempStream);
DataStream<Object> resultStream = connectedStreams.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {
@Override
public Object map1(Tuple2<String, Double> value) throws Exception {
return new Tuple3<>(value.f0, value.f1, "high temp warning");
}
@Override
public Object map2(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), "normal");
}
});
resultStream.print();
env.execute();
}
}
输出
(sensor_1,35.8,high temp warning)
(sensor_6,normal)
(sensor_10,38.1,high temp warning)
(sensor_7,normal)
(sensor_1,36.3,high temp warning)
(sensor_1,32.8,high temp warning)
(sensor_1,37.1,high temp warning)
// 3. union联合多条流
// warningStream.union(lowTempStream); 这个不行,因为warningStream类型是DataStream<Tuple2<String, Double>>,而highTempStream是DataStream<SensorReading>
highTempStream.union(lowTempStream, allTempStream);
1.3.算子转换
在Flink中,Transformation算子就是将一个或多个DataStream转换为新的DataStream,可以将多个转换组合成复杂的数据流拓扑。 如下图所示,DataStream会由不同的Transformation操作,转换、过滤、聚合成其他不同的流,从而完成我们的业务要求。
2.Window
- streaming流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。
- Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作。
2.1.Window的类型
- 时间窗口(Time Window):按照时间生成Window
- 滚动时间窗口
- 滑动时间窗口
- 会话窗口
- 计数窗口(Count Window):按照指定的数据条数生成一个Window,与时间无关
- 滚动计数窗口
- 滑动计数窗口
2.1.1滚动窗口(Tumbling Windows)
- 依据固定的窗口长度对数据进行切分
- 时间对齐,窗口长度固定,没有重叠
2.1.2.滑动窗口(Sliding Windows)
- 可以按照固定的长度向后滑动固定的距离
- 滑动窗口由固定的窗口长度和滑动间隔组成
- 可以有重叠(是否重叠和滑动距离有关系)
- 滑动窗口是固定窗口的更广义的一种形式,滚动窗口可以看做是滑动窗口的一种特殊情况(即窗口大小和滑动间隔相等)
2.1.3.会话窗口(Session Windows)
![image-20220505211832471](/Users/frankcooper/Library/Application Support/typora-user-images/image-20220505211832471.png)
- 由一系列事件组合一个指定时间长度的timeout间隙组成,也就是一段时间没有接收到新数据就会生成新的窗口
- 特点:时间无对齐
2.2.概述
-
窗口分配器——
window()
方法 -
我们可以用
.window()
来定义一个窗口,然后基于这个window去做一些聚合或者其他处理操作。注意
window()
方法必须在keyBy之后才能使用。 -
Flink提供了更加简单的
.timeWindow()
和.countWindow()
方法,用于定义时间窗口和计数窗口。
DataStream<Tuple2<String,Double>> minTempPerWindowStream =
datastream
.map(new MyMapper())
.keyBy(data -> data.f0)
.timeWindow(Time.seconds(15))
.minBy(1);
2.2.1.窗口分配器(window assigner)
window()
方法接收的输入参数是一个WindowAssigner- WindowAssigner负责将每条输入的数据分发到正确的window中
- Flink提供了通用的WindowAssigner
- 滚动窗口(tumbling window)
- 滑动窗口(sliding window)
- 会话窗口(session window)
- 全局窗口(global window
2.2.2.创建不同类型的窗口
- 滚动时间窗口(tumbling time window)
.timeWindow(Time.seconds(15))
- 滑动时间窗口(sliding time window)
.timeWindow(Time.seconds(15),Time.seconds(5))
- 会话窗口(session window)
.window(EventTimeSessionWindows.withGap(Time.minutes(10)))
- 滚动计数窗口(tumbling count window)
.countWindow(5)
- 滑动计数窗口(sliding count window)
.countWindow(10,2)
2.3.TimeWindow
TimeWindow将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算。
2.3.1滚动窗口
Flink默认的时间窗口根据ProcessingTime进行窗口的划分,将Flink获取到的数据根据进入Flink的时间划分到不同的窗口中。
DataStream<Tuple2<String, Double>> minTempPerWindowStream = dataStream
.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {
@Override
public Tuple2<String, Double> map(SensorReading value) throws Exception {
return new Tuple2<>(value.getId(), value.getTemperature());
}
})
.keyBy(data -> data.f0)
.timeWindow( Time.seconds(15) )
.minBy(1);
时间间隔可以通过Time.milliseconds(x)
,Time.seconds(x)
,Time.minutes(x)
等其中的一个来指定。
2.3.2.滑动窗口
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了5s,也就是说,每5s就计算输出结果一次,每一次计算的window范围是15s内的所有元素。
DataStream<SensorReading> minTempPerWindowStream = dataStream
.keyBy(SensorReading::getId)
.timeWindow( Time.seconds(15), Time.seconds(5) )
.minBy("temperature");
时间间隔可以通过Time.milliseconds(x)
,Time.seconds(x)
,Time.minutes(x)
等其中的一个来指定。
2.4.CountWindow
CountWindow根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果。
注意:CountWindow的window_size指的是相同Key的元素的个数,不是输入的所有元素的总数。
2.4.1.滚动窗口
默认的CountWindow是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。
DataStream<SensorReading> minTempPerWindowStream = dataStream
.keyBy(SensorReading::getId)
.countWindow( 5 )
.minBy("temperature");
2.4.2.滑动窗口
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了2,也就是说,每收到两个相同key的数据就计算一次,每一次计算的window范围是10个元素。
DataStream<SensorReading> minTempPerWindowStream = dataStream
.keyBy(SensorReading::getId)
.countWindow( 10, 2 )
.minBy("temperature");
2.5.window function
window function 定义了要对窗口中收集的数据做的计算操作,主要可以分为两类:
- 增量聚合函数(incremental aggregation functions)
- 全窗口函数(full window functions)
2.5.1.增量聚合函数
- 每条数据到来就进行计算,保持一个简单的状态。(来一条处理一条,但是不输出,到窗口临界位置才输出)
- 典型的增量聚合函数有ReduceFunction, AggregateFunction。
2.5.2.全窗口函数
- 先把窗口所有数据收集起来,等到计算的时候会遍历所有数据。(来一个放一个,窗口临界位置才遍历且计算、输出)
- ProcessWindowFunction,WindowFunction
2.5.3.其它
.trigger()
:window 什么时候关闭,触发计算并输出结果.evitor()
:定义移除某些数据的逻辑.allowedLateness()
:允许处理迟到的数据.sideOutputLateData()
:将迟到的数据放入侧输出流.getSideOutput()
:获取侧输出流
2.6.测试代码
2.6.1.滚动时间窗口的增量聚合函数
增量聚合函数,特点即每次数据过来都处理,但是到了窗口临界才输出结果
import com.frankcooper.apitest.beans.SensorReading;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
public class WindowTest1_TimeWindow {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 并行度设置1,方便看结果
env.setParallelism(1);
// 从文件读取数据
// DataStream<String> dataStream = env.readTextFile("/Users/frankcooper/IdeaProjects/spring-boot-climbing/bigdata-flink-grab/src/main/resources/sensor.txt");
// 从socket文本流获取数据
DataStream<String> inputStream = env.socketTextStream("localhost", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 开窗测试
// 1. 增量聚合函数 (这里简单统计每个key组里传感器信息的总数)
DataStream<Integer> resultStream = dataStream.keyBy("id")
// .countWindow(10, 2);
// .window(EventTimeSessionWindows.withGap(Time.minutes(1)));
// .window(TumblingProcessingTimeWindows.of(Time.seconds(15)))
// .timeWindow(Time.seconds(15)) // 已经不建议使用@Deprecated
.window(TumblingProcessingTimeWindows.of(Time.seconds(15)))
.aggregate(new AggregateFunction<SensorReading, Integer, Integer>() {
// 新建的累加器
@Override
public Integer createAccumulator() {
return 0;
}
// 每个数据在上次的基础上累加
@Override
public Integer add(SensorReading value, Integer accumulator) {
return accumulator + 1;
}
// 返回结果值
@Override
public Integer getResult(Integer accumulator) {
return accumulator;
}
// 分区合并结果(TimeWindow一般用不到,SessionWindow可能需要考虑合并)
@Override
public Integer merge(Integer a, Integer b) {
return a + b;
}
});
resultStream.print("result");
env.execute();
}
}
2.6.2.滚动时间窗口的全窗口函数
全窗口函数,特点即数据过来先不处理,等到窗口临界再遍历、计算、输出结果
import com.frankcooper.apitest.beans.SensorReading;
import org.apache.commons.collections.IteratorUtils;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
/**
* @author : Ashiamd email: ashiamd@foxmail.com
* @date : 2021/2/1 7:14 PM
*/
public class WindowTest1_TimeWindow_1 {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 并行度设置1,方便看结果
env.setParallelism(1);
// // 从文件读取数据
// DataStream<String> dataStream = env.readTextFile("/tmp/Flink_Tutorial/src/main/resources/sensor.txt");
// 从socket文本流获取数据
DataStream<String> inputStream = env.socketTextStream("localhost", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
// 2. 全窗口函数 (WindowFunction和ProcessWindowFunction,后者更全面)
SingleOutputStreamOperator<Tuple3<String, Long, Integer>> resultStream2 = dataStream.keyBy(SensorReading::getId)
.window(TumblingProcessingTimeWindows.of(Time.seconds(15)))
// .process(new ProcessWindowFunction<SensorReading, Object, Tuple, TimeWindow>() {
// })
.apply(new WindowFunction<SensorReading, Tuple3<String, Long, Integer>, String, TimeWindow>() {
@Override
public void apply(String s, TimeWindow window, Iterable<SensorReading> input, Collector<Tuple3<String, Long, Integer>> out) throws Exception {
String id = s;
long windowEnd = window.getEnd();
int count = IteratorUtils.toList(input.iterator()).size();
out.collect(new Tuple3<>(id, windowEnd, count));
}
});
resultStream2.print("result2");
env.execute();
}
}
2.6.3.滑动计数窗口的增量聚合函数
滑动窗口,当窗口不足设置的大小时,会先按照步长输出。
eg:窗口大小10,步长2,那么前5次输出时,窗口内的元素个数分别是(2,4,6,8,10),再往后就是10个为一个窗口了。
import com.frankcooper.apitest.beans.SensorReading;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class WindowTest2_CountWindow {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 并行度设置1,方便看结果
env.setParallelism(1);
// 从socket文本流获取数据
DataStream<String> inputStream = env.socketTextStream("localhost", 7777);
// 转换成SensorReading类型
DataStream<SensorReading> dataStream = inputStream.map(line -> {
String[] fields = line.split(",");
return new SensorReading(fields[0], new Long(fields[1]), new Double(fields[2]));
});
DataStream<Double> resultStream = dataStream.keyBy(SensorReading::getId)
.countWindow(10, 2)
.aggregate(new MyAvgFunc());
resultStream.print();
env.execute();
}
private static class MyAvgFunc implements AggregateFunction<SensorReading, Tuple2<Double, Integer>, Double> {
@Override
public Tuple2<Double, Integer> createAccumulator() {
return new Tuple2<>(0.0, 0);
}
@Override
public Tuple2<Double, Integer> add(SensorReading value, Tuple2<Double, Integer> accumulator) {
return new Tuple2<>(accumulator.f0 + value.getTemperature(), accumulator.f1 + 1);
}
@Override
public Double getResult(Tuple2<Double, Integer> accumulator) {
return accumulator.f0 / accumulator.f1;
}
@Override
public Tuple2<Double, Integer> merge(Tuple2<Double, Integer> a, Tuple2<Double, Integer> b) {
return new Tuple2<>(a.f0 + b.f0, a.f1 + b.f1);
}
}
}
-
这里为了方便,就只输入同一个keyBy组的数据
sensor_1
sensor_1,1547718199,1 sensor_1,1547718199,2 sensor_1,1547718199,3 sensor_1,1547718199,4 sensor_1,1547718199,5 sensor_1,1547718199,6 sensor_1,1547718199,7 sensor_1,1547718199,8 sensor_1,1547718199,9 sensor_1,1547718199,10 sensor_1,1547718199,11 sensor_1,1547718199,12 sensor_1,1547718199,13 sensor_1,1547718199,14
-
输出
输入时,会发现,每次到达一个窗口步长(这里为2),就会计算得出一次结果。
第一次计算前2个数的平均值
第二次计算前4个数的平均值
第三次计算前6个数的平均值
第四次计算前8个数的平均值
第五次计算前10个数的平均值
第六次计算前最近10个数的平均值
第七次计算前最近10个数的平均值
result> 1.5 result> 2.5 result> 3.5 result> 4.5 result> 5.5 result> 7.5 result> 9.5
2.6.4.其它
// 3. 其他可选API
OutputTag<SensorReading> outputTag = new OutputTag<SensorReading>("late") {
};
SingleOutputStreamOperator<SensorReading> sumStream = dataStream.keyBy("id")
.timeWindow(Time.seconds(15))
// .trigger() // 触发器,一般不使用
// .evictor() // 移除器,一般不使用
.allowedLateness(Time.minutes(1)) // 允许1分钟内的迟到数据<=比如数据产生时间在窗口范围内,但是要处理的时候已经超过窗口时间了
.sideOutputLateData(outputTag) // 侧输出流,迟到超过1分钟的数据,收集于此
.sum("temperature"); // 侧输出流 对 温度信息 求和。
- 个人主页【阿飞算法】 加我好友,进群一起交流~
本文由博客一文多发平台 OpenWrite 发布!